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Supplementary Material for the paper:
Action-conditioned On-demand Motion Generation

1 OVERVIEW
Our supplementary material includes two parts:

• Supplementary video which includes gif examples for mode
interpolation and trajectory customization.

• Supplementary document which introduces more imple-
mentations details as mentioned in the main text.

In this document, we first introduce the model architectures and
more implementation details in Section 2, then demonstrate more
details for our mode preserving VAE in Section 3. Dataset details
can also be found in Section 4.

2 IMPLEMENTATION DETAILS
In this section, we introduce the implementation details of ODMO
and other baseline algorithms, mode-preserving sampling, and met-
rics for evaluating the generated motion sequences.

2.1 ODMO Implementation Detail
We implemented the framework of ODMO using PyTorch and
trained the models with TITAN RTX GPU. The detailed architec-
ture for each component is shown in Figure 2 in main text and
Table 2. Note that the latent space dimension (the output of the
LMP encoder) is 20 and the decoder only relied on this small code
space and the one-hot encoded class information to reconstruct the
motion. During training, the contrastive margin 𝛼 is set to be 5, and
the target variance of posteriors is set to 0.05. In the training of the
network, we adopted the Adam optimizer with the learning rate
10−3 for both dataset. Additionally, teacher forcing (TF) is applied
for enforcing the stable and efficiency of the training with the TF
rate linear decayed from 1 to 0.3.

2.2 Mode-preserving sampling and silhouette
score

We use sihouette score to find the number of modes in activity
category adaptively. To be specific, we fit a GMM with 𝑘 mixture
components and compute the silhouette score 𝑆𝑘 . We vary 𝑘 from
3 to 11 to get 𝑆3 · · · 𝑆11. Starting from 𝑆3, we determine an 𝑖 such
that 𝑆𝑖 > 0.95 ∗ 𝑆𝑖+1 for the first time. Then the number of modes is
selected as 𝑖 . We dropped mixture components whose size is smaller
than 10 for denoising purpose.

2.3 Finding the optimal 𝜎2

As we show in Section 3, contrastive mechanism applied on the
encoder’s output mean 𝜇 (x) together with the prior regularization
of encoder’s output covariance vector 𝜎2 (x) helps to form our
data-driven mode-aware latent space. To find the most suitable
range of prior scale 𝜎2 for the motion generation task, we sweep
the parameter and list the result in Table 1. As we can see, as 𝜎2
increases, the performance drops especially for Acc and FID since
the estimated posterior 𝑞𝜙 (z | x) becomes too flat losing essential
information of each motion x. At the same time, when 𝜎2 becomes

too small, the generalization ability of the learnt model decreases
thus Diversity is low in general. Taking all the metrics different
models obtained and the effect of 𝜎2 on model generalization ability
into consideration, we use 𝜎2 = 0.05 to train all our final models
(listed in the main paper).

Table 1: 𝜎2 selection in three datasets.

HumanAct12

Methods Acc↑ FID↓ Diversity MModality

Real motions 99.70±.06 0.02±.01 7.08±.06 2.53±.05

𝜎2 = 6.25 94.06±.30 0.30±.01 6.98±.15 2.57±.05
𝜎2 = 1.25 95.84±.36 0.31±.01 7.00±.15 2.53±.07
𝜎2 = 0.25 97.52±.22 0.15±.01 7.08±.14 2.42±.05
𝜎2 = 0.05 97.81±.21 0.12±.01 7.05±.15 2.57±.04
𝜎2 = 0.01 97.81±.21 0.09±.02 7.03±.13 2.53±.09

Mocap

Methods Acc↑ FID↓ Diversity MModality

Real motions 98.54±.14 0.02±.00 6.57±.11 2.17±.08

𝜎2 = 6.25 86.95±.56 1.14±.05 6.32±.09 2.85±.10
𝜎2 = 1.25 89.05±.37 0.89±.05 6.40±.08 2.63±.08
𝜎2 = 0.25 91.69±.38 0.60±.02 6.51±.07 2.63±.07
𝜎2 = 0.05 93.51±.39 0.34±.03 6.56±.07 2.49±.06
𝜎2 = 0.01 89.82±.26 0.80±.03 6.40±.07 2.83±.08

UESTC

Methods Acc↑ FID𝑡𝑟 ↓ FID𝑡𝑒𝑠𝑡 ↓ Diversity MModality

Real motions 99.79±.05 0.01±.00 0.05±.00 7.20±.06 1.61±.02

𝜎2 = 6.25 59.19±.22 3.46±.03 3.45±.03 6.51±.07 2.26±.03
𝜎2 = 1.25 77.18±.28 1.25±.02 1.27±.02 6.80±.04 2.09±.03
𝜎2 = 0.25 89.83±.20 0.44±.01 0.40±.01 6.99±.07 1.87±.03
𝜎2 = 0.05 93.67±.18 0.15±.00 0.17±.00 7.11±.07 1.61±.03
𝜎2 = 0.01 93.70±.17 0.10±.00 0.12±.00 7.08±.06 1.76±.05

2.4 Baseline Algorithms
Action2Motion (A2M):We use A2M as one of our major baselines
for the three public datasets. We trained the A2M with joints’ xyz
coordinates representation (A2M xyz) and A2M using Lie group
representation (A2M Lie) on MoCap dataset for seven motion cat-
egories with their default parameters. On HumanAct12 dataset,
we directly employed their released model as baseline. On UESTC
dataset, we also directly trained A2M xyz and A2M Lie with their
default parameters.

ACTOR: We treat ACTOR as the other strong baselines for
UESTC and HumanAct12 dataset. We used their released model for
final evaluation.

Other baselines: For implementation of Act-MoCoGAN, we
followed their default architecture while replacing the image gener-
ator with pose generator and modified the image, video discrimina-
tors accordingly, as introduced in A2M paper. We trained the Act-
MoCoGAN by tweaking the hyper-parameters so that it achieves
the best generative results in the three dataset. As for the Gen-DLow,
we adapted it to motion generation task by replacing the motion
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Table 2: Architecture of ODMO

Module Layers details

LMP encoder
RNN layer 1 LSTM layer with 64 hidden units
Feature layer 2 fully connected layers followed by BN and PReLU activation
Output layer 1 fully connected layer

Trajectory generator

Embedding layer 2 fully conencted layers with PReLU activation in between
RNN layer 2 LSTM layers with 128 hidden units
Feature layer 3 fully conencted layers with PReLU activation
Output layer 1 fully connected layer

Motion generator Embedding layer 1 fully conencted layer with PReLU activation
(Trajectory encoder) RNN layer 2 LSTM layers with 128 hidden units

Motion generator Embedding layer 1 fully conencted layer with PReLU activation
(Motion decoder) RNN layer 2 LSTM layers with 128 hidden units

Output layer 1 fully connected layer

Table 3: Architecture of MoCap and HumanAct12 motion
classifiers (same as Action2Motion)

Layers Details

RNN layer 2 GRU layers with 128 hidden units

Feature layer fully connected layer with Tanh activation

Output layer 1 fully connected layer

Table 4: Architecture of our UESTC classifier

Layers Details

RNN layer 3 GRU layers with 256 hidden units

Feature layer fully connected layer with Tanh activation

Output layer 1 fully connected layer

history condition as the class one-hot encoding. We trained the
Gen-DLow (both VAE and DLow) in much more epochs (5000,600)
than the default parameter (500, 500) so that it can be better to
achieve the generative task.

2.5 Metrics Computation Details
Our metric computation follows the same procedure as Action2-
Motion (A2M) which includes sampling of ground truth and gener-
ated motion sequences, as well as computing fidelity and diversity
(multimodality) metrics based on them. However, since A2M and
ACTOR used slightly different sampling strategies on generating
the final evaluation metrics, for fair comparison, we recomputed
their metrics with our sampling setup instead of using the numbers
reported in their papers.

2.5.1 Metrics based on classifier. Frechet Inception Distance(FID),
Multimodality and Diversity are computed based on the extracted
features, i.e the output of the feature layer (see Tables 3 and 4) in
the classifier.

FID: We randomly sample (400/250/200) samples for (MoCap /
HumanAct12 / UESTC) samples from ground truth motion and gen-
erated motion across all categories indepedently. Then we calculate
the sample mean 𝜇 and covariance matrix Σ of the activation of
the extracted features 𝑥 ∈ R30 (the feature dimension in classifier
according to Action2Motion) from the set of real motion sequences

as (𝜇1, Σ1) and the set of generated motion sequences as (𝜇2, Σ2)
respectively. Lastly, FID is computed as ∥𝜇1 − 𝜇2∥2 + Tr(Σ1 + Σ2 −
2
√
Σ1Σ2).
Multimodality: To measure diversity inside one category, we

randomly sample 20 pairs of motion sequences inside that category
and extract their features as set C1, then compute the average pair-
wise Euclidean distance among these pairs, i.e, 1

20
∑

(𝑥𝑖 ,𝑥 𝑗 ) ∈C1


𝑥𝑖 − 𝑥 𝑗



.
Diversity: To measure the diversity of motion sequences across

motion categories, we randomly sample 200 pairs of motion across
all categories and extract their features as set C2, then calculate the
average pairwise Euclidean distance, i.e. 1

200
∑

(𝑥𝑖 ,𝑥 𝑗 ) ∈C2


𝑥𝑖 − 𝑥 𝑗



.
2.5.2 Motion Classifiers. The metrics based on motion classifiers
trained on real motion have been introduced in the A2M paper
and we applied the same framework to compare performance of
different models. For HumanAct12 dataset, we used the released
classifier from A2M to make the results we benchmarked compa-
rable. For MoCap dataset, we used 7 action categories instead of 8
action categories as in the A2M paper (Wash activity is dropped
due to the noisy data), and thus we need to train our own classi-
fier for our MoCap dataset. The architecture is shown in Table 3.
Similarly, for UESTC dataset, a xyz representaion based classifier is
not avalable from previous works, so we trained our own classifier
with architecture shown in Table 4.

3 MODE PRESERVING VAE
3.1 VAE: From variational perspective to prior

regularization
From a Variational Bayesian perspective, the evidence low bound
(ELBO) can be derived from data log likelihood log𝑝𝜃 (𝑥) minus KL
divergence between the estimated posterior 𝑞𝜙 (z | x) and 𝑝𝜃 (z | x)
as shown below:

log 𝑝𝜃 (x) = Ez∼𝑞𝜙 (z |x) [log 𝑝𝜃 (x)]

= Ez∼𝑞𝜙 (z |x)

[
log

(
𝑝𝜃 (x, z)
𝑞𝜙 (z | x)

·
𝑞𝜙 (z | x)
𝑝𝜃 (z | x)

)]
= Ez∼𝑞𝜙 (z |x)

[
log

(
𝑝𝜃 (x, z)
𝑞𝜙 (z | x)

)]
︸                                ︷︷                                ︸

𝐸𝐿𝐵𝑂

+𝐷𝐾𝐿 (𝑞𝜙 (z | x) | |𝑝𝜃 (z | x)) .

2022-04-19 08:55. Page 2 of 1–4.
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To train a VAE for a given dataset 𝐷 , the loss function, which
needs to be minimized, is the negative of the ELBO, and can be
rewritten as

−𝑙𝜃,𝜙 (𝐷) =
∑︁
x∈𝐷
Ez∼𝑞𝜙 (z |x)

[
log (𝑝𝜃 (x, z)) − log

(
𝑞𝜙 (z | x)

)]
=

∑︁
x∈𝐷
Ez∼𝑞𝜙 (z |x) [log(𝑝𝜃 (x | z))] + 𝐷𝐾𝐿 (𝑞𝜙 (z | x) ∥ 𝑝𝜃 (z)) .

For the standard VAE, we assume the prior 𝑝 (z) is a Normal
distribution with zero mean and unit variance, and the estimated
posterior 𝑞𝜙 (z | x) is assumed to be a normal distribution with
mean 𝜇 (x) ∈ R𝑑 and covariance diag(𝜎2 (x)) ∈ R𝑑×𝑑 . Taking the
powerful transformation capacity of neural networks into con-
sideration, this assumption generally works. With this choice of
𝑞𝜙 (z | x), we have:

−𝑙𝜃,𝜙 (𝐷) =
∑︁
x∈𝐷
Ez∼𝑞𝜙 (z |x) [log(𝑝𝜃 (x | z))] + 𝐷𝐾𝐿 (𝑞Φ (z | x) ∥ 𝑝𝜃 (z))

=
∑︁
x∈𝐷

(Ez∼𝑞𝜙 (z |x) [log(𝑝𝜃 (x | z))]+

1
2

[
−

𝑑∑︁
𝑖

(
log𝜎2𝑖 (x) + 1

)
+

𝑑∑︁
𝑖

𝜎2𝑖 (x) +
𝑑∑︁
𝑖

𝜇2𝑖 (x)
]
) .

(1)

The encoder and decoder networks with parameters, 𝜙 and 𝜃 ,
respectively can be trained jointly with the loss function in Equa-
tion (1).

If we leave the variational framework aside, ELBO can also be
viewed from a quite different optimization perspective: VAE is
more like an autoencoder with additional sampling process in the
latent space. We want the encoding decoding process have good
reconstruction results, so a reconstruction loss term should be
imposed. At the same time, we want some regularization on the
encoder’s output 𝜇 (x) and 𝜎 (x) such that there is less overfitting
and more generalization. Without regularization of 𝜇 (x), the latent
space can potentially be infinite and too sparse and specific for
each datapoint. Without regularization of 𝜎 (x), it can safely go to 0
which reduces to an autoencoder without any sampling power. So
we need regularization for both terms. Thus we can rewrite ELBO
as a combination of a reconstruction loss and a regularization term
on 𝜇 (x) and 𝜎 (x), i.e. the negative of log of prior distribution of
these parameters.

We assume that for each data point x, the prior for encoded
vector 𝜇 is independent over all components. For 𝜇, that term would
correspond to a prior of 𝜇 under normal distribution, i.e.

−1
2
𝜇2𝑖 (x) → 𝜇𝑖 (x) ∼ N (𝜇𝑖 (x) | 0, 1) .

Similarly, for 𝜎 (x), its related regularization termwould correspond
to a prior of gamma distribution,

1
2

(
log

(
𝜎2𝑖 (x)

)
− 𝜎2𝑖 (x)

)
→ 𝜎2𝑖 (x) ∼ Γ

(
𝜎2𝑖 (x) | 𝛼 =

3
2
, 𝛽 =

1
2

)
.

3.2 Contrastive Mechanism
Following this point of view, more complex prior of 𝜇’s should
be constructed to provide more modeling capacity in the latent

space. To automatically form such a structure in the latent space,
we deducted some general principles for the algorithm to follow.
First, when the motion sequences are similar, their latent codes
should be nearby, it leads to the assumptions that the latent codes
corresponding to the same mode should cluster in the latent space.
At the same time, the low-dimensional representation of different
motion sequences are far apart in the latent space, which means
that each category should its own cluster.

Instead of using standard distributions, we form a distribution us-
ing self contrastingmechanism.Wewant to regularize 𝜇 jointly for𝑛
datapoints. The most convenient way is to view it as a spring ensem-
ble system. The probability of one configuration 𝑋 : (𝜇1, · · · , 𝜇𝑛) is
modeled as Boltzmann distribution, which is proportional to the
exponential of the configurations energy, i.e. 𝑝 (𝑥) ∝ 𝑒−𝛽𝐸 , where
𝐸 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1

1
2𝑘 (𝑐𝑖 , 𝑐 𝑗 ) (𝜇 (𝜇𝑖 , 𝜇 𝑗 ) − 𝜇𝑠 (𝑐𝑖 , 𝑐 𝑗 ))2. In different cases,

we specify stiffness function 𝑘 and stress free length 𝜇𝑠 accordingly.
For encoded two data points corresponding to the same activity,

𝜇𝑖 and 𝜇 𝑗 , then we assign a spring whose stress free length is 𝜇𝑠 = 0
and the dynamic length is 𝜇 =



𝜇𝑖 − 𝜇 𝑗


. We assume the stiffness is

1, then its energy is 1
2 (𝜇 − 𝜇𝑠 )2. Higher energy is contained by the

pair of points with further distance. A spring like this is assigned to
every pair of 𝜇𝑖 and 𝜇 𝑗 belonging to the same category for all cate-
gories. Thus if we look at energy from one category 𝑐 , minimizing
this part of the energy would be equivalent to minimizing the dis-
tance of each 𝜇𝑐,𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑐 ) (encoded data belonging to category

𝑐) to the category center 𝜇𝑐 =
∑𝑛𝑐

𝑖=1 𝜇𝑐,𝑖
𝑛𝑐

, as shown in Equation (2).

𝑛𝑐∑︁
𝑖=1

𝑛𝑐∑︁
𝑗=1

1
2



𝜇𝑐,𝑖 − 𝜇𝑐,𝑗


2 = 2𝑛𝑐

𝑛𝑐∑︁
𝑖=1

1
2



𝜇𝑐,𝑖 − 𝜇𝑐


2 (2)

Considering the encoded two data points 𝜇𝑖 and 𝜇 𝑗 correspond-
ing to different activities, we define a compression-only spring with
stress free length 𝜇𝑠 = 𝛼 (margin size), and the spring’s dynamic
length as 𝜇 =



𝜇𝑖 − 𝜇 𝑗


, similarly as in the previous case. For this

compression only spring, the energy is 1
2 (𝜇 − 𝜇𝑠 )2 only if 𝜇 < 𝛼 .

This leads to a hinge loss function in the optimization.

4 DATASETS

Figure 1: Human skeleton in the MoCap dataset (left), Hu-
manAct12 dataset (middle), and UESTC dataset (right) with
the joint number annotated in black. Root node (pelvis) is
annotated as 0.
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We used CMUMoCap dataset, HumanAct 12 dataset, and UESTC
dataset, which contain diversified 3D motion sequences with varied
lengths for seven, twelve, and forty daily activities respectively.
MoCap dataset represents 3D human skeleton as 21 joints and 20
bones; while HumanAct 12 dataset uses 24 joints and 23 bones;
For UESTC dataset, there are 18 joints and 17 bones as shown in
Figure 1. The root node for these three datasets is 0. The detailed
categories and number of motions belonging to each dataset are
shown in Tables 5 to 7.

During the training phase, in order to balance the training sam-
ples from different motion categories, we applied the stratified
sampling strategy. Furthermore, since each real motion sequence
in the training data has different time duration, in each training
epoch, we randomly sample a consecutive motion segment with
the desired length from each real motion sequence: 100 frames for
MoCap and 60 frames for HumanAct12, and 60 frames for UESTC.
If one motion sequence is shorter than the desired length, we pad it
with the last frame until the desired length is reached. After obtain-
ing the fixed-length sub-sequences from the original data source,
we shift it to ensure that the initial frame’s root joint is at the origin.

Table 5: Statistics of our MoCap Dataset

Action type Number of sequences
Walk 474
Run 109
Dance 77
Jump 108

Animal Behavior 101
Step 68
Climb 33
Total 970

Table 6: Statistics of HumanAct12 Dataset

Action type Number of sequences
Warm up 215
Walk 47
Run 50
Jump 94
Drink 88

Lift dumbbell 218
Sit 54
Eat 77

Turn steering wheel 56
Phone 61
Boxing 140
Throw 91
Total 1191

Table 7: Statistics of UESTC Dataset

Action type Number of sequences
standing-gastrocnemius-calf 345
single-leg-lateral-hopping 345

high-knees-running 345
rope-skipping 343

standing-toe-touches 339
front-raising 285

straight-forward-flexion 285
standing-opposite-elbow-to-knee-crunch 285

dumbbell-side-bend 285
shoulder-raising 285

single-dumbbell-raising 285
wrist-circling 285
punching 285

pulling-chest-expanders 284
shoulder-abduction 281
overhead-stretching 270

head-anticlockwise-circling 270
deltoid-muscle-stretching 270
upper-back-stretching 270

spinal-stretching 268
alternate-knee-lifting 255

knee-to-chest 255
knee-circling 255
bent-over-twist 255
standing-rotation 255
pinching-back 240

dumbbell-shrugging 240
dumbbell-one-arm-shoulder-pressing 240

elbow-circling 240
arm-circling 235

raising-hand-and-jumping 225
forward-lunging 225

left-kicking 225
left-lunging 225

punching-and-knee-lifting 225
squatting 225

jumping-jack 225
marking-time-and-knee-lifting 225

rotation-clapping 225
left-stretching 224

Total 10629
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